Warehouse Design Patterns | CONFIDENTIAL

FABRIC WAREHOUSE
DESIGN PATTERNS

Schema Design • Star Schema • Fact/Dimension • Loading Patterns

Version 1.0 | January 2026

Table of Contents

1. Warehouse Fundamentals
Fabric Warehouse is a fully managed, cloud-native data warehouse optimized for T-SQL analytics. It provides enterprise-grade SQL capabilities with automatic performance optimization and seamless integration with the Fabric ecosystem.
1.1 Key Characteristics
1. Full T-SQL support for DDL and DML operations
1. Delta Lake storage format (same as Lakehouse)
1. Automatic statistics and query optimization
1. Built-in workload management
1. Row-level and column-level security
1. Native integration with Power BI Direct Lake
1.2 Warehouse vs. Lakehouse
	Aspect
	Warehouse
	Lakehouse

	Primary Language
	T-SQL
	PySpark/SQL

	Write Access
	Full SQL DML
	Spark or SQL read-only endpoint

	Schema
	Enforced (schema-on-write)
	Flexible (schema-on-read)

	Best For
	BI queries, SQL workloads
	Data engineering, ML

	Files Folder
	No
	Yes

1.3 When to Use Warehouse
1. SQL-centric teams and workloads
1. Complex analytical queries with joins
1. BI reporting with Power BI
1. Row-level security requirements
1. T-SQL stored procedures and views
1. Migration from traditional data warehouses

2. Schema Design
Design schemas to organize tables logically and support security, maintainability, and discoverability.
2.1 Schema Strategy
	Schema
	Purpose
	Examples

	staging
	Landing area for raw/intermediate data
	stg_claims, stg_member

	curated
	Cleansed, conformed enterprise data
	dim_member, fact_claims

	reporting
	Pre-aggregated reporting tables
	rpt_claims_monthly

	audit
	Logging and tracking tables
	pipeline_runs, data_quality

2.2 Creating Schemas
-- Create schemas
CREATE SCHEMA staging;
CREATE SCHEMA curated;
CREATE SCHEMA reporting;
CREATE SCHEMA audit;
2.3 Naming Conventions
	Object
	Convention
	Example

	Dimension
	dim_[entity]
	dim_member, dim_provider

	Fact
	fact_[subject]
	fact_claims, fact_enrollment

	Staging
	stg_[source]_[entity]
	stg_core_claims

	View
	vw_[description]
	vw_active_members

	Procedure
	usp_[action]_[entity]
	usp_load_dim_member

3. Dimensional Modeling
Dimensional modeling organizes data into facts and dimensions for intuitive, performant analytics.
3.1 Star Schema
Central fact table surrounded by dimension tables.
1. Fact tables: Numeric measures at specific grain
1. Dimension tables: Descriptive attributes for filtering/grouping
1. Simple joins: One hop from fact to dimension
1. Optimized for aggregation queries
3.2 Fact Table Design
CREATE TABLE curated.fact_claims (
 -- Surrogate keys
 sk_member_id BIGINT NOT NULL,
 sk_provider_id BIGINT NOT NULL,
 sk_date_id INT NOT NULL,

 -- Degenerate dimensions
 claim_id VARCHAR(50) NOT NULL,
 claim_line_number INT NOT NULL,

 -- Measures
 billed_amount DECIMAL(18,2),
 allowed_amount DECIMAL(18,2),
 paid_amount DECIMAL(18,2),
 member_liability DECIMAL(18,2),
 service_units INT,

 -- Audit
 etl_batch_id INT,
 etl_loaded_ts DATETIME2 DEFAULT GETDATE()
);
Fact Table Guidelines
1. Define clear grain (one row = one what?)
1. Use surrogate keys to join dimensions
1. Store additive measures (can be summed)
1. Include degenerate dimensions (claim_id)
1. Add audit columns for traceability
3.3 Dimension Table Design
CREATE TABLE curated.dim_member (
 -- Surrogate key
 sk_member_id BIGINT IDENTITY(1,1) PRIMARY KEY,

 -- Business key
 member_id VARCHAR(20) NOT NULL,

 -- Attributes
 first_name VARCHAR(50),
 last_name VARCHAR(50),
 date_of_birth DATE,
 gender VARCHAR(10),
 address_line1 VARCHAR(100),
 city VARCHAR(50),
 state VARCHAR(2),
 zip_code VARCHAR(10),

 -- SCD Type 2 columns
 effective_date DATE NOT NULL,
 expiration_date DATE,
 is_current BIT DEFAULT 1,

 -- Audit
 etl_loaded_ts DATETIME2 DEFAULT GETDATE()
);

4. Slowly Changing Dimensions
Handle changes to dimension attributes over time using SCD patterns.
4.1 SCD Types
	Type
	Behavior
	Use Case

	Type 0
	Never change (retain original)
	Original enrollment date

	Type 1
	Overwrite with current value
	Correcting data entry errors

	Type 2
	Add new row, track history
	Address changes, status changes

	Type 3
	Add column for previous value
	Track one prior value only

4.2 SCD Type 2 Implementation
-- MERGE for SCD Type 2
MERGE INTO curated.dim_member AS target
USING staging.stg_member AS source
ON target.member_id = source.member_id AND target.is_current = 1

-- Update existing current record (close it)
WHEN MATCHED AND (
 target.first_name != source.first_name OR
 target.address_line1 != source.address_line1
) THEN UPDATE SET
 target.is_current = 0,
 target.expiration_date = CAST(GETDATE() AS DATE)

-- Insert new record
WHEN NOT MATCHED THEN INSERT (
 member_id, first_name, last_name, address_line1,
 effective_date, is_current
) VALUES (
 source.member_id, source.first_name, source.last_name,
 source.address_line1, CAST(GETDATE() AS DATE), 1
);
4.3 Insert New Version
-- After MERGE, insert new versions for changed records
INSERT INTO curated.dim_member (
 member_id, first_name, last_name, address_line1,
 effective_date, is_current
)
SELECT
 s.member_id, s.first_name, s.last_name, s.address_line1,
 CAST(GETDATE() AS DATE), 1
FROM staging.stg_member s
INNER JOIN curated.dim_member d
 ON s.member_id = d.member_id
 AND d.is_current = 0
 AND d.expiration_date = CAST(GETDATE() AS DATE);

5. Date Dimension
A date dimension is essential for time-based analysis in any data warehouse.
5.1 Date Dimension Structure
CREATE TABLE curated.dim_date (
 date_key INT PRIMARY KEY, -- YYYYMMDD
 full_date DATE NOT NULL,
 day_of_week TINYINT,
 day_name VARCHAR(10),
 day_of_month TINYINT,
 day_of_year SMALLINT,
 week_of_year TINYINT,
 month_number TINYINT,
 month_name VARCHAR(10),
 quarter_number TINYINT,
 quarter_name VARCHAR(2), -- Q1, Q2, etc.
 year_number SMALLINT,
 year_month VARCHAR(7), -- 2024-01
 year_quarter VARCHAR(7), -- 2024-Q1
 is_weekend BIT,
 is_holiday BIT,
 holiday_name VARCHAR(50),
 fiscal_year SMALLINT,
 fiscal_quarter TINYINT,
 fiscal_month TINYINT
);
5.2 Populating Date Dimension
-- Generate dates using recursive CTE
WITH DateRange AS (
 SELECT CAST('2020-01-01' AS DATE) AS full_date
 UNION ALL
 SELECT DATEADD(DAY, 1, full_date)
 FROM DateRange
 WHERE full_date < '2030-12-31'
)
INSERT INTO curated.dim_date
SELECT
 CAST(FORMAT(full_date, 'yyyyMMdd') AS INT) AS date_key,
 full_date,
 DATEPART(WEEKDAY, full_date) AS day_of_week,
 DATENAME(WEEKDAY, full_date) AS day_name,
 DAY(full_date) AS day_of_month,
 DATEPART(DAYOFYEAR, full_date) AS day_of_year,
 DATEPART(WEEK, full_date) AS week_of_year,
 MONTH(full_date) AS month_number,
 DATENAME(MONTH, full_date) AS month_name,
 DATEPART(QUARTER, full_date) AS quarter_number,
 'Q' + CAST(DATEPART(QUARTER, full_date) AS VARCHAR) AS quarter_name,
 YEAR(full_date) AS year_number,
 FORMAT(full_date, 'yyyy-MM') AS year_month,
 -- ... additional columns
FROM DateRange
OPTION (MAXRECURSION 0);

6. Loading Patterns
6.1 Full Load
Replace all data in target table. Use for small dimensions or full refresh scenarios.
TRUNCATE TABLE curated.dim_provider;

INSERT INTO curated.dim_provider
SELECT * FROM staging.stg_provider;

6.2 Incremental Load
Load only new or changed records based on watermark.
-- Get high watermark
DECLARE @last_load DATETIME2;
SELECT @last_load = MAX(etl_loaded_ts) FROM curated.fact_claims;

-- Load incremental
INSERT INTO curated.fact_claims
SELECT * FROM staging.stg_claims
WHERE modified_date > @last_load;
6.3 MERGE Pattern
Upsert pattern for dimensions and slowly changing data.
MERGE INTO curated.dim_provider AS target
USING staging.stg_provider AS source
ON target.provider_id = source.provider_id

WHEN MATCHED THEN UPDATE SET
 target.provider_name = source.provider_name,
 target.specialty = source.specialty,
 target.etl_loaded_ts = GETDATE()

WHEN NOT MATCHED THEN INSERT (
 provider_id, provider_name, specialty, etl_loaded_ts
) VALUES (
 source.provider_id, source.provider_name,
 source.specialty, GETDATE()
);

7. Best Practices
7.1 Design Guidelines
1. Define clear grain for each fact table
1. Use surrogate keys for dimension joins
1. Implement SCD Type 2 for historical tracking
1. Create conformed dimensions for consistency
1. Document all business rules
1. Build date dimension covering all needed dates
7.2 Performance Guidelines
1. Use appropriate data types (smallest sufficient)
1. Avoid nullable columns in fact tables
1. Create statistics on frequently joined columns
1. Use views for security and abstraction
1. Partition large fact tables by date
7.3 Anti-Patterns to Avoid
1. Wide fact tables with many dimensions
1. Storing calculated measures that can be derived
1. Using business keys instead of surrogate keys
1. Mixing grains in single fact table
1. Snowflaking dimensions unnecessarily
1. Ignoring data quality at staging layer

Appendix: Document Information
	Document Title
	Warehouse Design Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
